Speckle Suppression Method in SAR image Based on Curvelet Domain BivaShrink Model

نویسندگان

  • Wenbo Wang
  • Xiaodong Zhang
  • Xiangli Wang
چکیده

Based on the statistical property of SAR image speckle noise and the property that the multiscale geometric analysis can capture the intrinsic geometrical structure of image, combining curvelet transform with BivaShrink denoising model, a method of SAR image denoising based on curvelet domain is presented in this paper. According to calculation of variance homogeneous measurement and curvelet coefficients of current layer and its parent layer, the local adaptive window is determined to optimally estimate shrinkage factor. The method can effectively reduce SAR speckle noise and preserving details of SAR image well through the correlation of curvelet coefficients in the same direction of subband and parent-layer subband. The experimental results show the presented method greatly improves the subjective visual effect and the numerical indicators of the denoised image.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Using Laplace Distribution

Speckle is a granular noise-like phenomenon which appears in Synthetic Aperture Radar (SAR) images due to coherent properties of SAR systems. The presence of speckle complicates both human and automatic analysis of SAR images. As a result, speckle reduction is an important preprocessing step for many SAR remote sensing applications. Speckle reduction can be made through multi-looking during the...

متن کامل

Speckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Exploiting Intra-scale and Inter-scale Dependencies

Synthetic Aperture Radar (SAR) images are inherently affected by a multiplicative noise-like phenomenon called speckle, which is indeed the nature of all coherent systems. Speckle decreases the performance of almost all the information extraction methods such as classification, segmentation, and change detection, therefore speckle must be suppressed. Despeckling can be applied by the multilooki...

متن کامل

A New Curvelet-Based Texture Classification Approach for Land Cover Recognition of SAR Satellite

Texture recognition of synthetic aperture radar (SAR) images, an important technique in the remote sensing area, has been deeply interested in the past decade. It is a key method to analyze this special case of images in practical applications. Watershed transform seems to be a proper method utilized to segment images. However, speckle noise in SAR images and the low resolution of edges make th...

متن کامل

الگوریتم حذف Speckle با قابلیت حفظ لبه برای تصاویر سنجش‌ازدور رادار روزنه ترکیبی با استفاده از تبدیل چندمقیاسه‌ی Curvelet و آستانه‌گذاری وفقی

چکیده: تبدیل کرولت (Curvelet)، نوع جدیدی از الگوریتم آنالیز چندمقیاسه بوده که برای پردازش تصاویر SAR بسیار مناسب است. این تبدیل، جزو تبدیل­های هندسی محسوب می­شود که برای رفع مشکلات اساسی تبدیل­های ویولت (موجک) و گابور در تشخیص لبه­ها و منحنی­ها توسعه پیدا کرد. تبدیل Curvelet را می­توان در جهت رسیدن به بخش­بندی بهتر و شناسایی اهداف در تصاویر ماهواره­ای SAR با دقت بسیار بالا به کار برد. در این مق...

متن کامل

Synthetic Aperture Radar Image Clustering with Curvelet Subband Gauss Distribution Parameters

Curvelet transform is a multidirectional multiscale transform that enables sparse representations for signals. Curvelet-based feature extraction for Synthetic Aperture Radar (SAR) naturally enables utilizing spatial locality; the use of curvelet-based feature extraction is a novel method for SAR clustering. The implemented method is based on curvelet subband Gaussian distribution parameter esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JSW

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013